LDAC is a strange family of codecs, not merely because they’re the only codecs that really attempt the hi-res thing, but because they have perplexing issues with common phones. For example, the bitrate defaults are wildly different from phone to phone. The Samsung Galaxy Note 8 and LG V30 both default to 660kbps, and the Google Pixel 3 defaults to the lesser 330kbps. However, the noise present with every LDAC connection is far greater than it is with a regular old 3.5mm headphone jack.
We use a commercially-available Bluetooth high-def interface with an S/PDIF output to test the Bluetooth output of four flagship phones. This way, we’re able to record test signal output and compare the datasets with our in-house analysis software. We kicked the tires on a 96kHz/24-bit test file to see how Bluetooth handled high-bitrate music, as well as normal 44.1kHz/16-bit files to see how each codec treated CD-quality streaming audio. We then measured the recorded sample against the original file. We used both lograrithmic sine sweeps, and complex signals like square waves in order to provide a more realistic set of tests for how people actually use Bluetooth headphones.
The problem is made even worse by the fact that Android phones can’t handle AAC in a method that approaches Apple’s performance with the codec. Consequently, we will no longer be recommending AAC-only headsets here at SoundGuys, as the experience is that broken from source to source. The results are crappier and noisier than the other codecs by a longshot.
While iPhone users can expect that their phones are missing essential parts to look good, AAC is one of those codecs that maybe cut a few too many bits out of its data transmission. By using an aggressive psychoacoustic model of compression, AAC seeks to cut data where you wouldn’t normally be able to hear it anyway—but it gets a little too aggressive at times.
A. It depends. Noise-cancelling headphones use active technology to play unique frequencies that block outside noises, and depending on which model you buy, the battery can last anywhere from 15 to 40 hours. If you’re using a set of wireless headphones, the battery will be used for both noise cancellation and wireless connectivity, so expect the battery to deplete faster if you’re using both.
An electret driver functions along the same electromechanical means as an electrostatic driver. However the electret driver has a permanent charge built into it, whereas electrostatics have the charge applied to the driver by an external generator. Electret and electrostatic headphones are relatively uncommon. Original electrets were also typically cheaper and lower in technical capability and fidelity than electrostatics. Patent applications from 2009-2013 have been approved that show by using different materials, i.e. a "Fluorinated cyclic olefin electret film", Frequency response chart readings can reach 50 kHz at 100db. When these new improved electrets are combined with a traditional dome headphone driver, headphones can be produced that are recognised by the Japan Audio Society as worthy of joining the Hi Res Audio program. US patents 8,559,660 B2. 7,732,547 B2.7,879,446 B2.7,498,699 B2.
Hi. I have more or less decided that the Philips Fidelio L1s are the ones for me. I plan to use them on my commute paired with an iPhone or the iPad as the source. I listen to a mix of pop, rock, blues and jazz so I’m not after boosting bass but I might want to fiddle with the dial on the treble and mids. Which brings me to my question. You state in your review that the L2s pair well with the Fiio e17 which lets you independently adjust treble and bass. Could the same effect be achieved lower down the $$ curve via a combination of say a Fiio E6 (for signal amplification) and a Dirac or Accudio app for equalisation?
Unlike with other codecs, AAC test signals from Android phones like the Huawei P20 Pro, LG V30, and Samsung Galaxy Note 8 all vary wildly. Though we can’t definitively say why each Android device seems to handle AAC encoding differently, the fact of the matter is that only Apple can do it well. We suspect some of the power saving features baked into the Google ecosystem’s varying hardware has consequences for audio playback. Nowhere is this more apparent than Huawei’s power-sipping P20 Pro, which seems to cut out at around 14.25kHz.
Preferences for the length of headphone cables vary for portable users, especially depending on where you prefer to wear your device: a backpack or a pants pocket necessitates a longer cable, while you'll opt for a short one when wearing a player on a neck lavalier or an armband. But a cable length at either extreme need not be a fatal flaw: extension cables can lengthen those that are too short, and cable wraps can tighten up ones that are too long.

The rule that I use is that the bigger the size of the headphone, the bigger the need for amplification. Of course factors like driver sensitivity and impedance will matter, but the general rule of thumb is, use a dedicated headphone amplifier for a full size headphone. Even a portable amplifier can be enough, depending on the type of the headphones.
The impedance of headphones is of concern because of the output limitations of amplifiers. A modern pair of headphones is driven by an amplifier, with lower impedance headphones presenting a larger load. Amplifiers are not ideal; they also have some output impedance that limits the amount of power they can provide. To ensure an even frequency response, adequate damping factor, and undistorted sound, an amplifier should have an output impedance less than 1/8 that of the headphones it is driving (and ideally, as low as possible). If output impedance is large compared to the impedance of the headphones, significantly higher distortion is present.[11] Therefore, lower impedance headphones tend to be louder and more efficient, but also demand a more capable amplifier. Higher impedance headphones are more tolerant of amplifier limitations, but produce less volume for a given output level.
The E25BT didn’t score quite as high for audio quality as other models on this list, and it lacks some features you’ll find on certain other models, such as water resistance and extended battery life. But if you want a pair of wireless headphones that provide decent sound at a fraction of the cost of its competitors, the E25BT is an appealing option.
Dale: It’s really the same with any genre or sub-genre of music, that the sound from different artists and tracks can vary a lot, so having more than one headphone is a plus. When only one headphone is available at a particular time (portable use especially), one option is to use a headphone that can accommodate a wide range of genres, in which case there may be compromises to consider. Another option is to carry two headphones – one on the head or around the neck and another in a carry case. Some of the small headphones can make this easy to do.
Headphones (or head-phones in the early days of telephony and radio) traditionally refer to a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an audio source privately, in contrast to a loudspeaker, which emits sound into the open air for anyone nearby to hear. Headphones are also known as earspeakers, earphones[1] or, colloquially, cans.[2] Circumaural ('around the ear') and supra-aural ('over the ear') headphones use a band over the top of the head to hold the speakers in place. Another type, known as earbuds or earpieces[1] consist of individual units that plug into the user's ear canal. A third type are bone conduction headphones, which typically wrap around the back of the head and rest in front of the ear canal, leaving the ear canal open. In the context of telecommunication, a headset is a combination of headphone and microphone.
×