With a battery that’s rated for 15 hours of continuous use, we’re seriously hoping you don’t outlast them. If you do play for super extended periods, however, you’ll be glad that the earcups can comfortably rotate, giving you the option to drop the headband around your neck and still hear all the action. The latest version of the A50 offer significant customization options through software, and if you’re using them with a PC, you can connect directly to your sound card instead of using the optical connection. On the Xbox One version, you’ll even get Dolby Atmos for Headphones compatibility.

A. It can be difficult, so buy earbuds that include silicone tips in multiple sizes. Everyone’s ears are unique, so most earbud manufactures include small, medium, and large silicone tips that you can easily swap out. If you want a particularly snug fit, consider getting third-party earphone tips made of memory foam, which will always adjust to the contours of your ears.
Mid-range: Many headphones that cost between $50 and $130 include improved sound and useful smartphone integration (like custom EQ controls). In this price range, you’ll also see a big jump in the quality of materials used, which improves both the sound and the luxury of each pair. If you need a pair of well-made headphones with basic noise cancellation, you’ll need to spend at least this much.
Dale: It’s really the same with any genre or sub-genre of music, that the sound from different artists and tracks can vary a lot, so having more than one headphone is a plus. When only one headphone is available at a particular time (portable use especially), one option is to use a headphone that can accommodate a wide range of genres, in which case there may be compromises to consider. Another option is to carry two headphones – one on the head or around the neck and another in a carry case. Some of the small headphones can make this easy to do.
Technology has changed our lives in some pretty big ways – nowadays, it’s hard to imagine leaving the house without at least a few of our most important gadgets. New tech categories are sprouting up out of nowhere; ten years ago, no one had ever heard of a smartwatch, and now you see them everywhere you go. But there’s one tech category that’s remained essential all along: headphones.
Sealed models are ideal for private listening, where you don't want the sound to be heard by other people. Open headphones -- such as foam earpad models and many sports designs -- are acoustically transparent and allow outside sound to be heard by the headphone wearer, and a good deal of the headphones' sound will be audible to anyone near the listener.
Pairing high sensitivity headphones with power amplifiers can produce dangerously high volumes and damage headphones. The maximum sound pressure level is a matter of preference, with some sources recommending no higher than 110 to 120 dB. In contrast, the American Occupational Safety and Health Administration recommends an average SPL of no more than 85 dB(A) to avoid long-term hearing loss, while the European Union standard EN 50332-1:2013 recommends that volumes above 85 dB(A) include a warning, with an absolute maximum volume (defined using 40–4000 Hz noise) of no more than 100 dB to avoid accidental hearing damage.[14] Using this standard, headphones with sensitivities of 90, 100 and 110 dB (SPL)/V should be driven by an amplifier capable of no more than 3.162, 1.0 and 0.3162 RMS volts at maximum volume setting, respectively to reduce the risk of hearing damage.
We use a commercially-available Bluetooth high-def interface with an S/PDIF output to test the Bluetooth output of four flagship phones. This way, we’re able to record test signal output and compare the datasets with our in-house analysis software. We kicked the tires on a 96kHz/24-bit test file to see how Bluetooth handled high-bitrate music, as well as normal 44.1kHz/16-bit files to see how each codec treated CD-quality streaming audio. We then measured the recorded sample against the original file. We used both lograrithmic sine sweeps, and complex signals like square waves in order to provide a more realistic set of tests for how people actually use Bluetooth headphones.

The fit isn’t always an easy thing to be sure of when you can’t try before buying, since some ear pads will not have a satisfactory fit to some ears. Power requirements aren’t a simple matter of looking at the impedance, since efficiency or sensitivity doesn’t always track directly with impedance. Another issue indirectly related to power requirements are whether the headphone has the option for ‘balanced’ use or some other connection that isn’t a 3.5 mm or 6.35 mm jack and plug.

Just a few hours of burn-in today – I don’t expect much change with Tesla-quality drivers etc. The treble is recessed almost as much as the Philips M1 I had, kind-of a worst-case scenario. So I took out my most minimal non-peaky non-bright non-sibilant headphone – the B&O H6, and even though it doesn’t sound the same as the T51p because of the H6’s “light” midrange, I wanted to get a sense of how much the T51p was recessed below a very minimal treble. My Foobar2000 settings were +2 at 2.5, +4 at 3.5, +2 at 5, +4 at 7, +6 at 10, 14, and 20 khz. Normally I wouldn’t do the dip at 5 khz, but the T51p has a nasty 10 db peak around 5 khz, which makes it difficult for portable use without a customizable equalizer. Without a treble boost it sounds very boomy as well as muffled. I can understand Beyer going to a darker sound with more bass – in fact I thought it was a move in the right direction. But they need to cut that (resonant?) peak around 5 khz. I compared to several other headphones and none of those were anything like that.


LDAC is a strange family of codecs, not merely because they’re the only codecs that really attempt the hi-res thing, but because they have perplexing issues with common phones. For example, the bitrate defaults are wildly different from phone to phone. The Samsung Galaxy Note 8 and LG V30 both default to 660kbps, and the Google Pixel 3 defaults to the lesser 330kbps. However, the noise present with every LDAC connection is far greater than it is with a regular old 3.5mm headphone jack.
Headphones connect to a signal source such as an audio amplifier, radio, CD player, portable media player, mobile phone, video game console, or electronic musical instrument, either directly using a cord, or using wireless technology such as Bluetooth, DECT or FM radio. The first headphones were developed in the late 19th century for use by telephone operators, to keep their hands free. Initially the audio quality was mediocre and a step forward was the invention of high fidelity headphones.[3]
×