If you have a bass problem you could find a filter of some kind that cuts the low bass. Some bass controls can do that. I haven’t found a music genre that totally lacks strong bass, although “acoustic” sometimes doesn’t have strong bass. Mainly, you should make sure your system is matched properly with amp and headphone, so the different frequencies are in balance. Then you will have better luck with different music.


Headphones can prevent other people from hearing the sound, either for privacy or to prevent disturbing others, as in listening in a public library. They can also provide a level of sound fidelity greater than loudspeakers of similar cost. Part of their ability to do so comes from the lack of any need to perform room correction treatments with headphones. High-quality headphones can have an extremely flat low-frequency response down to 20 Hz within 3 dB. While a loudspeaker must use a relatively large (often 15" or 18") speaker driver to reproduce low frequencies, headphones can accurately reproduce bass and sub-bass frequencies with speaker drivers only 40-50 millimeters wide (or much smaller, as is the case with in-ear monitor headphones). Headphones' impressive low-frequency performance is possible because they are so much closer to the ear that they only need to move relatively small volumes of air.
The Bose Frames are non-polarized sunglasses with special speakers built into each arm. The idea is that they’re designed to look like regular sunglasses, but also act as Bluetooth headphones. Since there’s no earbud that actually goes into your ears, the speakers have been engineered to shoot audio down into your ears; the neat thing is that the Bose Frames do a very good job at masking your audio so that the people around you can’t really hear what you’re listening to. They are available in two different frame styles, round (Rondo) or square (Aldo).
Smaller earbud type earpieces, which plugged into the user's ear canal, were first developed for hearing aids. They became widely used with transistor radios, which commercially appeared in 1954 with the introduction of the Regency TR-1. The most popular audio device in history, the transistor radio changed listening habits, allowing people to listen to radio anywhere. The earbud uses either a moving iron driver or a piezoelectric crystal to produce sound. The 3.5 mm radio and phone connector, which is the most commonly used in portable application today, has been used at least since the Sony EFM-117J transistor radio, which was released in 1964.[9][10] Its popularity was reinforced with its use on the Walkman portable tape player in 1979.
The iPhone will drive the headphone fine and make a very nice sound, but the amp will make a big improvement in harmonic extension and soundstage. Use the amp whenever possible. Both Headfonia and I concur that the E07k is a great amp, and probably the best thing you can get for up to twice the price. I’m familiar only with the E07k, the E17, and the E12. I think the E07k beats the E17 (and both are also USB DACs), while the E12 is just an amp, and has a darker sound but with more power for inefficient headphones. The Philips is not inefficient.
Those who buy either of these headphones are in for a treat. Our reviewer didn’t hold back in their assessment of these cans’ ability to fully realize every detail of a recording, noting their “warm and rigid bass, a midrange that dips close to the ruddy colors of analog tape saturation (without sacrificing an ounce of detail), and a laser tight response up top that helps illuminate vivid clarity and granular instrumental texture across the board.”

Dale: There are so many types of amplifiers (and DAC’s with amplifiers) that there is no shortcut for studying all of the options, unless you settle for the most generic approach. Important things to consider are power – if you don’t have enough power for your headphone and the dynamics in the music, clipping will result. Sometimes the clipping is “soft” and not readily noticed, but eventually you would discover that much of the detail goes missing or gets veiled with limited dynamics. Another consideration is whether to use a DAC, which may be a separate DAC or built into the same enclosure as the amp. Most DACs will improve the sound over the DACs that are built into computers, but when a DAC is available to replace the DAC built into most cellphones and low to mid-priced music players, you can usually expect a much greater improvement.


The SoundSport Wireless are wireless sport earbuds that are very similar to the SoundSport Free. Instead of being true wireless earbuds, however, the two SoundSport Wireless earbuds are tethered together by cable. Aside from that, the two wireless earbuds have similar audio performance and use the same Bose Connect app. The SoundSport Wireless will last longer on a single charge (as opposed to the SoundSport Free which recharge every time they go back in their case).
The QuietComfort 30s are Bose’s wireless in-ear headphones with active noise cancellation, and they’ve set the bar for the category since they were released in 2016. The QuietComfort 30s utilize the same StayHear+ tips as all Bose’s other in-ear headphones and they use the same app as the company’s other QuietComfort headphones. The one caveat is that the QuietComfort 30s are a neckband-style of wireless headphone, so they’re fairly heavy and probably best served for office settings.
The impedance of headphones is of concern because of the output limitations of amplifiers. A modern pair of headphones is driven by an amplifier, with lower impedance headphones presenting a larger load. Amplifiers are not ideal; they also have some output impedance that limits the amount of power they can provide. To ensure an even frequency response, adequate damping factor, and undistorted sound, an amplifier should have an output impedance less than 1/8 that of the headphones it is driving (and ideally, as low as possible). If output impedance is large compared to the impedance of the headphones, significantly higher distortion is present.[11] Therefore, lower impedance headphones tend to be louder and more efficient, but also demand a more capable amplifier. Higher impedance headphones are more tolerant of amplifier limitations, but produce less volume for a given output level.

That amp, if in good working condition, has 100 times the potential sound quality that those 2 headphones can play. You could improve the sound somewhat with a careful EQ, since the Marantz will have power reserve to spare. But I’d try to find a better headphone, and there are some bargains out there. If I were suggesting an ortho, I’d say get the lower price Mad Dog, which will give you great audiophile sound with the Marantz.

Music keeps me energized all day (and into the night) at work — 70% electronica/dance/DNB, 20% rock, 5% hip hip and 5% other/classical — but I’m tired of low-quality sound and I’m ready to put my money where my ears are.  I want to buy a USB DAC + Headphone amp, buy headphones (or, per your recommendation, to buy 2 pair) to complement the amp and my choice of music, and get great desktop sound for around $350.


Be sure to assess the build quality of your prospective headphones. Some earbuds and portable devices are relatively fragile, for instance. If the headphones fold up for easy storage, are the hinges robust, or will they fall apart in a month or two? Don't forget to consider that the earpads and earbuds will get extensive wear and tear over the life of the headphones.
Sensitivity is a measure of how effectively an earpiece converts an incoming electrical signal into an audible sound. It thus indicates how loud the headphones are for a given electrical drive level. It can be measured in decibels of sound pressure level per milliwatt (dB (SPL)/mW) or decibels of sound pressure level per volt (dB (SPL) / V).[12] Unfortunately, both definitions are widely used, often interchangeably. As the output voltage (but not power) of a headphone amplifier is essentially constant for most common headphones, dB/mW is often more useful if converted into dB/V using Ohm's law:

These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
×