These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
What I’m saying here is that it’s better to own three $100 headphones than one $300 headphone. Or three $300 headphones than one $900 headphone. Why? Because most people don’t limit their playlist to strictly one genre. And following the logic from Rule #2, the right headphone-music pairing is going to be better than one expensive headphone paired to the wrong music.

The fit isn’t always an easy thing to be sure of when you can’t try before buying, since some ear pads will not have a satisfactory fit to some ears. Power requirements aren’t a simple matter of looking at the impedance, since efficiency or sensitivity doesn’t always track directly with impedance. Another issue indirectly related to power requirements are whether the headphone has the option for ‘balanced’ use or some other connection that isn’t a 3.5 mm or 6.35 mm jack and plug.
Headphones can prevent other people from hearing the sound, either for privacy or to prevent disturbing others, as in listening in a public library. They can also provide a level of sound fidelity greater than loudspeakers of similar cost. Part of their ability to do so comes from the lack of any need to perform room correction treatments with headphones. High-quality headphones can have an extremely flat low-frequency response down to 20 Hz within 3 dB. While a loudspeaker must use a relatively large (often 15" or 18") speaker driver to reproduce low frequencies, headphones can accurately reproduce bass and sub-bass frequencies with speaker drivers only 40-50 millimeters wide (or much smaller, as is the case with in-ear monitor headphones). Headphones' impressive low-frequency performance is possible because they are so much closer to the ear that they only need to move relatively small volumes of air.
The usual way of limiting sound volume on devices driving headphones is by limiting output power. This has the additional undesirable effect of being dependent of the efficiency of the headphones; a device producing the maximum allowed power may not produce adequate volume when paired with low-efficiency, high-impedance equipment, while the same amount of power can reach dangerous levels with very efficient earphones.
We run every pair through a rigorous testing process over several days or weeks. That includes playing them in all sorts of scenarios — be it on a bus, in the listening room, or at the office — and playing back from a wide array of sources. We know most people use their headphones with a smartphone, often with lower-quality MP3 resolution tracks, so we do, too.

Open back usually results in more natural sound, but they leak sound in and out. This means you probably can’t use them in a library or a plane flight since the sound of your music will leak out and disturb the people around you. You also can’t use them on loud public places since noise from the outside will disturb your music. Therefore, even though open back would give you more natural reproduction, for these reasons their use is limited to mostly at home or in the office (if you have your own space that is).
Open back usually results in more natural sound, but they leak sound in and out. This means you probably can’t use them in a library or a plane flight since the sound of your music will leak out and disturb the people around you. You also can’t use them on loud public places since noise from the outside will disturb your music. Therefore, even though open back would give you more natural reproduction, for these reasons their use is limited to mostly at home or in the office (if you have your own space that is).
While the data signal containing Bluetooth audio is compressed, headphone and earphone manufacturers have found ways to enhance the signal to compensate for its deficiencies in a way that even audiophiles can appreciate. We've included some wireless options here, but if you're really keen on cutting the cord, check out The Best Wireless Headphones. And if you want to go completely wireless (with no cord at all connecting the two earpieces), check out The Best True Wireless Headphones—just keep in mind these are about as far from over-ear headphones as you can get.
Hey Mike, I’m a mixing Engineer looking to invest in a high end pair of headphones for when i’m forced to mix a song on the road. I already have the DT 770 pros and BEATS by dre headphones which i feel will be good enough for references. But I’m looking for a 3rd pair that really has a flat response and that is very detailed. I’m willing to spend $1,500 to $2,500. Are there any headphones you can recommend looking into. Thanks
With a battery that’s rated for 15 hours of continuous use, we’re seriously hoping you don’t outlast them. If you do play for super extended periods, however, you’ll be glad that the earcups can comfortably rotate, giving you the option to drop the headband around your neck and still hear all the action. The latest version of the A50 offer significant customization options through software, and if you’re using them with a PC, you can connect directly to your sound card instead of using the optical connection. On the Xbox One version, you’ll even get Dolby Atmos for Headphones compatibility.
The Bose Frames are non-polarized sunglasses with special speakers built into each arm. The idea is that they’re designed to look like regular sunglasses, but also act as Bluetooth headphones. Since there’s no earbud that actually goes into your ears, the speakers have been engineered to shoot audio down into your ears; the neat thing is that the Bose Frames do a very good job at masking your audio so that the people around you can’t really hear what you’re listening to. They are available in two different frame styles, round (Rondo) or square (Aldo).

That amp, if in good working condition, has 100 times the potential sound quality that those 2 headphones can play. You could improve the sound somewhat with a careful EQ, since the Marantz will have power reserve to spare. But I’d try to find a better headphone, and there are some bargains out there. If I were suggesting an ortho, I’d say get the lower price Mad Dog, which will give you great audiophile sound with the Marantz.
However, we also move up to high-resolution audio files, as well as a wide variety of sources, including plugging in directly to a PC or Mac, using USB DACs (digital-to-analog converters), and employing high-quality, dedicated portable players and amplifiers. Finally, we compare the headphones to some of our go-to models, both in their class and price point, as well as a level or two above to find out if they can punch above their weight.

An electret driver functions along the same electromechanical means as an electrostatic driver. However the electret driver has a permanent charge built into it, whereas electrostatics have the charge applied to the driver by an external generator. Electret and electrostatic headphones are relatively uncommon. Original electrets were also typically cheaper and lower in technical capability and fidelity than electrostatics. Patent applications from 2009-2013 have been approved that show by using different materials, i.e. a "Fluorinated cyclic olefin electret film", Frequency response chart readings can reach 50 kHz at 100db. When these new improved electrets are combined with a traditional dome headphone driver, headphones can be produced that are recognised by the Japan Audio Society as worthy of joining the Hi Res Audio program. US patents 8,559,660 B2. 7,732,547 B2.7,879,446 B2.7,498,699 B2.

In the professional audio sector, headphones are used in live situations by disc jockeys with a DJ mixer, and sound engineers for monitoring signal sources. In radio studios, DJs use a pair of headphones when talking to the microphone while the speakers are turned off to eliminate acoustic feedback while monitoring their own voice. In studio recordings, musicians and singers use headphones to play or sing along to a backing track or band. In military applications, audio signals of many varieties are monitored using headphones.

×