Dale: It’s really the same with any genre or sub-genre of music, that the sound from different artists and tracks can vary a lot, so having more than one headphone is a plus. When only one headphone is available at a particular time (portable use especially), one option is to use a headphone that can accommodate a wide range of genres, in which case there may be compromises to consider. Another option is to carry two headphones – one on the head or around the neck and another in a carry case. Some of the small headphones can make this easy to do.

Alternatively, online calculators can be used.[13] Once the sensitivity per volt is known, the maximum volume for a pair of headphones can be easily calculated from the maximum amplifier output voltage. For example, for a headphone with a sensitivity of 100 dB (SPL)/V, an amplifier with an output of 1 root mean square (RMS) voltage produces a maximum volume of 100 dB.


Dale: The examples listed here are good general rules, but one thing to keep in mind is in the mid-to-lower price tiers, open-back headphones aren’t nearly as common as the closed types. The smaller list of choices, and the more limited reviews of those items, could make getting a perfect fit more difficult. Sound stage and openness are often given as the advantage of the open-back types, but it’s just a general rule and some closed-back headphones excel at those properties. An important thing to consider is the music itself, since sound stage and perspective varies widely in different recordings.
The usual way of limiting sound volume on devices driving headphones is by limiting output power. This has the additional undesirable effect of being dependent of the efficiency of the headphones; a device producing the maximum allowed power may not produce adequate volume when paired with low-efficiency, high-impedance equipment, while the same amount of power can reach dangerous levels with very efficient earphones.
An electret driver functions along the same electromechanical means as an electrostatic driver. However the electret driver has a permanent charge built into it, whereas electrostatics have the charge applied to the driver by an external generator. Electret and electrostatic headphones are relatively uncommon. Original electrets were also typically cheaper and lower in technical capability and fidelity than electrostatics. Patent applications from 2009-2013 have been approved that show by using different materials, i.e. a "Fluorinated cyclic olefin electret film", Frequency response chart readings can reach 50 kHz at 100db. When these new improved electrets are combined with a traditional dome headphone driver, headphones can be produced that are recognised by the Japan Audio Society as worthy of joining the Hi Res Audio program. US patents 8,559,660 B2. 7,732,547 B2.7,879,446 B2.7,498,699 B2.

The fit isn’t always an easy thing to be sure of when you can’t try before buying, since some ear pads will not have a satisfactory fit to some ears. Power requirements aren’t a simple matter of looking at the impedance, since efficiency or sensitivity doesn’t always track directly with impedance. Another issue indirectly related to power requirements are whether the headphone has the option for ‘balanced’ use or some other connection that isn’t a 3.5 mm or 6.35 mm jack and plug.

Generally, headphones are able to reproduce richer low-end audio, since they have larger drivers than earphones and they don't rely on an in-ear seal to deliver sound. Some listeners also find headphones more comfortable to wear, and easier to put on and take off, than they do earphones. This naturally means that headphones are bulkier, and less suited to the gym.

I already own a few headphones, namely the Audio-Technica ATH-Pro500MK2, ATH-T500, Sennheiser PX 100 II & PX 200 II, and the Philips Downtown and Uptown (Rule #3). I’m thinking of adding a new one and I can’t decide between the Beats Solo 2, Grado SR80e, and Sony MDR-10RC (budget constraints). I listen mostly Pop/Rock and Classical music and I have a cheap (Fiio E06) headphone amplifier.
Garbage in = Garbage out (GIGO) is a popular phrase used to emphasize the importance of a good source. This can be the soundcard in your laptop, the quality of your portable audio player, or the CD player you’re using for music listening. Those fall into the “Source” category. The better your source is, the better the sound will be at the headphone end. This is why we are seeing more and more audiophile digital audio players (audiophile DAPs). They are expensive but they sound good.
Sealed models are ideal for private listening, where you don't want the sound to be heard by other people. Open headphones -- such as foam earpad models and many sports designs -- are acoustically transparent and allow outside sound to be heard by the headphone wearer, and a good deal of the headphones' sound will be audible to anyone near the listener.
The E25BT didn’t score quite as high for audio quality as other models on this list, and it lacks some features you’ll find on certain other models, such as water resistance and extended battery life. But if you want a pair of wireless headphones that provide decent sound at a fraction of the cost of its competitors, the E25BT is an appealing option.

Expensive: Audiophile-grade headphones can cost anywhere between $130 and $2,000. Headphones in this price bracket are no joke: they create impressive soundscapes, are robust enough for use in a recording studio, and they’re just plain beautiful. If you need a pair of headphones for critical listening, or you simply want the best headphones around, it’ll cost you.


Pairing high sensitivity headphones with power amplifiers can produce dangerously high volumes and damage headphones. The maximum sound pressure level is a matter of preference, with some sources recommending no higher than 110 to 120 dB. In contrast, the American Occupational Safety and Health Administration recommends an average SPL of no more than 85 dB(A) to avoid long-term hearing loss, while the European Union standard EN 50332-1:2013 recommends that volumes above 85 dB(A) include a warning, with an absolute maximum volume (defined using 40–4000 Hz noise) of no more than 100 dB to avoid accidental hearing damage.[14] Using this standard, headphones with sensitivities of 90, 100 and 110 dB (SPL)/V should be driven by an amplifier capable of no more than 3.162, 1.0 and 0.3162 RMS volts at maximum volume setting, respectively to reduce the risk of hearing damage.
Once you’ve got that all order, to put a cherry on top it would be ideal for the amp to play nice with my laptops (PC at work, Mac at home) *and* my *iPhone* 4S.  I haven’t found a headunit that works with PCs and iDevices.  If one doesn’t exist it would be a big plus for the amp to include inputs so I can get digital sound out of my iPhone (with the Pure i20 or its ilk) and into my headphones.

The company is well known for bringing noise-canceling headphones to the general public — the QuietComfort Acoustic Noise Cancelling headphones were released in 2000 — and since then, it’s only continued to churn out industry-leading noise-canceling headphones. Its most recent iteration, the Noise Cancelling Headphones 700, might just be the best noise-canceling headphones, ever.
Pairing high sensitivity headphones with power amplifiers can produce dangerously high volumes and damage headphones. The maximum sound pressure level is a matter of preference, with some sources recommending no higher than 110 to 120 dB. In contrast, the American Occupational Safety and Health Administration recommends an average SPL of no more than 85 dB(A) to avoid long-term hearing loss, while the European Union standard EN 50332-1:2013 recommends that volumes above 85 dB(A) include a warning, with an absolute maximum volume (defined using 40–4000 Hz noise) of no more than 100 dB to avoid accidental hearing damage.[14] Using this standard, headphones with sensitivities of 90, 100 and 110 dB (SPL)/V should be driven by an amplifier capable of no more than 3.162, 1.0 and 0.3162 RMS volts at maximum volume setting, respectively to reduce the risk of hearing damage.
These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
×