We use a commercially-available Bluetooth high-def interface with an S/PDIF output to test the Bluetooth output of four flagship phones. This way, we’re able to record test signal output and compare the datasets with our in-house analysis software. We kicked the tires on a 96kHz/24-bit test file to see how Bluetooth handled high-bitrate music, as well as normal 44.1kHz/16-bit files to see how each codec treated CD-quality streaming audio. We then measured the recorded sample against the original file. We used both lograrithmic sine sweeps, and complex signals like square waves in order to provide a more realistic set of tests for how people actually use Bluetooth headphones.

The moving coil driver, more commonly referred to as a "dynamic" driver is the most common type used in headphones. It consists of a stationary magnet element affixed to the frame of the headphone, which sets up a static magnetic field. The magnet in headphones is typically composed of ferrite or neodymium. A voice coil, a light coil of wire, is suspended in the magnetic field of the magnet, attached to a diaphragm, typically fabricated from lightweight, high-stiffness-to-mass-ratio cellulose, polymer, carbon material, paper or the like. When the varying current of an audio signal is passed through the coil, it creates a varying magnetic field that reacts against the static magnetic field, exerting a varying force on the coil causing it and the attached diaphragm to vibrate. The vibrating diaphragm pushes on the air to produce sound waves.
Headphones can prevent other people from hearing the sound, either for privacy or to prevent disturbing others, as in listening in a public library. They can also provide a level of sound fidelity greater than loudspeakers of similar cost. Part of their ability to do so comes from the lack of any need to perform room correction treatments with headphones. High-quality headphones can have an extremely flat low-frequency response down to 20 Hz within 3 dB. While a loudspeaker must use a relatively large (often 15" or 18") speaker driver to reproduce low frequencies, headphones can accurately reproduce bass and sub-bass frequencies with speaker drivers only 40-50 millimeters wide (or much smaller, as is the case with in-ear monitor headphones). Headphones' impressive low-frequency performance is possible because they are so much closer to the ear that they only need to move relatively small volumes of air.
Released in 2017, the Bose QuietComfort 35 (Series I) are essentially the exact same headphones as the Series II. They have the same design, feel, sound quality and noise-canceling skills. The difference is that the Series I don’t have Google Assistant built-in and a dedicated button on the left ear cup to activate it. If you don’t care about talking to a virtual assistant while wearing your headphones, which allows you to play/pause music or skip tracks via a verbal command, then Series I or Series II shouldn’t matter to you. The catch is that the Series I is more difficult to find online and they aren’t usually that much cheaper than the Series II.
The WH-1000xM3’s excellent noise-canceling technology ranks second only to the Bose QC35 II, from the brand that has long dominated the market in terms of sheer noise-blocking abilities. That said, the Sony cans sound much better than the new bass-forward Bose option, and offer numerous features that help to create a much better overall experience.
Passive noise isolation is essentially using the body of the earphone, either over or in the ear, as a passive earplug that simply blocks out sound. The headphone types that provide most attenuation are in-ear canal headphones and closed-back headphones, both circumaural and supra aural. Open-back and earbud headphones provide some passive noise isolation, but much less than the others. Typical closed-back headphones block 8 to 12 dB, and in-ears anywhere from 10 to 15 dB. Some models have been specifically designed for drummers to facilitate the drummer monitoring the recorded sound while reducing sound directly from the drums as much as possible. Such headphones claim to reduce ambient noise by around 25 dB.

Earbuds have small speakers that rest on the ear canal of the wearer. These are usually much less expensive than on-ear and over-ear headphones and reproduce the sound well. However, outside sounds, such as traffic or power tools, can get past the earbuds and interfere with your enjoyment. Earbuds also don't stay in place very well if the wearer is moving much, such as exercising. These also are lower fidelity than on-ear and over-ear headphones.

×