While noise-canceling headphones are what it’s best known for, Bose makes plenty of other high-quality headphones and earbuds for people who don’t want or need noise cancellation, which degrades audio quality and costs a premium. From true wireless AirPod competitors to old-school wired earbuds, to just cheaper wireless over-ear cans, Bose makes a headphone for every style and, more importantly, for every budget.

Just a few hours of burn-in today – I don’t expect much change with Tesla-quality drivers etc. The treble is recessed almost as much as the Philips M1 I had, kind-of a worst-case scenario. So I took out my most minimal non-peaky non-bright non-sibilant headphone – the B&O H6, and even though it doesn’t sound the same as the T51p because of the H6’s “light” midrange, I wanted to get a sense of how much the T51p was recessed below a very minimal treble. My Foobar2000 settings were +2 at 2.5, +4 at 3.5, +2 at 5, +4 at 7, +6 at 10, 14, and 20 khz. Normally I wouldn’t do the dip at 5 khz, but the T51p has a nasty 10 db peak around 5 khz, which makes it difficult for portable use without a customizable equalizer. Without a treble boost it sounds very boomy as well as muffled. I can understand Beyer going to a darker sound with more bass – in fact I thought it was a move in the right direction. But they need to cut that (resonant?) peak around 5 khz. I compared to several other headphones and none of those were anything like that.
The company is well known for bringing noise-canceling headphones to the general public — the QuietComfort Acoustic Noise Cancelling headphones were released in 2000 — and since then, it’s only continued to churn out industry-leading noise-canceling headphones. Its most recent iteration, the Noise Cancelling Headphones 700, might just be the best noise-canceling headphones, ever.
The impedance of headphones is of concern because of the output limitations of amplifiers. A modern pair of headphones is driven by an amplifier, with lower impedance headphones presenting a larger load. Amplifiers are not ideal; they also have some output impedance that limits the amount of power they can provide. To ensure an even frequency response, adequate damping factor, and undistorted sound, an amplifier should have an output impedance less than 1/8 that of the headphones it is driving (and ideally, as low as possible). If output impedance is large compared to the impedance of the headphones, significantly higher distortion is present.[11] Therefore, lower impedance headphones tend to be louder and more efficient, but also demand a more capable amplifier. Higher impedance headphones are more tolerant of amplifier limitations, but produce less volume for a given output level.
Fathers Day is just around the corner and we want to help you find the right gift for the amazing fathers in your life. At RadioShack of Lenoir, we have some awesome deals going on RIGHT NOW! Buy the Nebo Big Daddy Flashlight (2000 lumens) and get the Nebo Blast half off, Nebo Knives are buy one get one half off, and Nebo flipits are buy one get one 40% off. We also have some awesome Bluetooth portable speakers that can be taken to the lake, bonfire, or the beach. Also, come by and enter your father to win a Nebo glow light along with a Nebo cup! We hope to see you soon!
Using headphones at a sufficiently high volume level may cause temporary or permanent hearing impairment or deafness. The headphone volume often has to compete with the background noise, especially in loud places such as subway stations, aircraft, and large crowds. Extended periods of exposure to high sound pressure levels created by headphones at high volume settings may be damaging to hearing;[25][26] Nearly 50% of teenagers and young adults (12 to 35 years old) in middle and high income countries listen to unsafe levels of sound on their personal audio devices and smartphones.[27] however, one hearing expert found in 2012 (before the worldwide adoption of smartphones as the main personal listening devices) that "fewer than 5% of users select volume levels and listen frequently enough to risk hearing loss."[28] The International Telecommunication Union recently published "Guidelines for safe listening devices/systems" recommended that sound exposure not exceed 80 decibels, A-weighted dB(A) for a maximum of 40 hours per week.[29] The European Union have also set a similar limit for users of personal listening devices (80 dB(A) for no more than 40 hours per week) and for each additional increase of 3-dB in sound exposure, the duration should be cut in half (83 dB(A) for no more than 20 hours, 86 dB(A) for 10 hours per week, 89 dB(A) for 5 hours per week and so on. Most major manufactures of smartphones now include some safety or volume limiting features and warning messaging in their devices.[30][31] though such practices have received mixed response from some segments of the buying who favor the personal choice of setting their own volume levels.
Noise cancellation: Noise-cancelling headphones play specific tones, much like white noise, to cancel out all of the sound around you and allow you to enjoy your music uninterrupted. Noise-cancellation is an active process, so headphones with this feature require batteries. If you’re a frequent flyer, or if you’ve got a noisy commute to work each day, you’ll love noise-cancelling headphones: they’re fantastic at keeping the cacophony of the outside world at bay.
While Apple’s AirPods get a lot of attention for how well they work with other Apple products, there’s actually a more affordable option that’s just as tightly integrated: the Beats BeatsX Earphones. Apple owns the Beats brand, and it’s built the BeatsX earphones with the same W1 chip that’s in the AirPods. That means that the user experience is virtually identical – iOS makes it super easy to pair them with any iPhone or iPad. Our favorite part is they have a Fast Fuel feature, so when your battery is low, plugging them in for five minutes provides two hours of talk time. We’re also big fans of the COWIN E7 Headphones. They’re wireless, they’ve got on-board noise cancellation, and they can last up to 30 hours on a single charge. The E7’s have an impressive spec sheet for any price point, but the fact that they’re so affordable makes them an even better value. If you’re looking for affordable over-the-ear headphones that don’t make any compromises, this is the pair to get.
Dale: The examples listed above are good general rules, but there also are so many exceptions and in-betweens that it also could be better to understand what is needed for your music, so you can narrow the search to the most appropriate headphones. For example, you may have heard that Classical music is a particular genre, but within that ‘genre’ are many very different types of music. Chamber music or pipe organ music may benefit from a headphone that’s highly detailed in the treble (a headphone that some users might say is bright), while harpsichord music and music that has a lot of strong trumpet sounds might be better served with a more rounded or softer treble.

Headphones are available with high or low impedance (typically measured at 1 kHz). Low-impedance headphones are in the range 16 to 32 ohms and high-impedance headphones are about 100-600 ohms. As the impedance of a pair of headphones increases, more voltage (at a given current) is required to drive it, and the loudness of the headphones for a given voltage decreases. In recent years, impedance of newer headphones has generally decreased to accommodate lower voltages available on battery powered CMOS-based portable electronics. This has resulted in headphones that can be more efficiently driven by battery-powered electronics. Consequently, newer amplifiers are based on designs with relatively low output impedance.
Technology has changed our lives in some pretty big ways – nowadays, it’s hard to imagine leaving the house without at least a few of our most important gadgets. New tech categories are sprouting up out of nowhere; ten years ago, no one had ever heard of a smartwatch, and now you see them everywhere you go. But there’s one tech category that’s remained essential all along: headphones.
Sensitivity is a measure of how effectively an earpiece converts an incoming electrical signal into an audible sound. It thus indicates how loud the headphones are for a given electrical drive level. It can be measured in decibels of sound pressure level per milliwatt (dB (SPL)/mW) or decibels of sound pressure level per volt (dB (SPL) / V).[12] Unfortunately, both definitions are widely used, often interchangeably. As the output voltage (but not power) of a headphone amplifier is essentially constant for most common headphones, dB/mW is often more useful if converted into dB/V using Ohm's law:
Case in point: the Koss PortaPro headphones first hit the market in 1984 and have become such a favorite with audiophiles that the company leaves the design (and the price tag) untouched. You can still pick one up for less than $50, and they come with a lifetime warranty, no receipt necessary. Check out our favorite budget headphones for more selections.
The Soundsport Free, released in the fall of 2017, are Bose’s first truly wireless earbuds. They utilize the same StayHear+ Sport tips as the company’s other in-ear headphones, making them naturally more sweat-resistant and more secure than AirPods. They work with the Bose Connect app, which is pretty basic but does have a “Find My Buds” feature that, when enabled, can help you find your earbuds should you misplace them.

These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
×