A: What you plug your headphones into can significantly affect their sound, and the quality of the amplifiers built into portable CD/MP3 players is generally awful. It's not their fault: the little guys have to power their electronics and their internal amplifier using a few puny volts. Even some of the better home AV receivers' headphone jacks offer highly variable sound quality.
Whether you wear headphones for your daily commute, regular workouts, or just for jamming out at home, you need a good pair that’s comfortable and can make everything sound great. Headphone tech has evolved significantly, too, so some pairs can do a lot more than just play sound. It’s not tough to find a pair that can connect to your smartphone wirelessly, or one that can keep outside commotion out.
LDAC is a strange family of codecs, not merely because they’re the only codecs that really attempt the hi-res thing, but because they have perplexing issues with common phones. For example, the bitrate defaults are wildly different from phone to phone. The Samsung Galaxy Note 8 and LG V30 both default to 660kbps, and the Google Pixel 3 defaults to the lesser 330kbps. However, the noise present with every LDAC connection is far greater than it is with a regular old 3.5mm headphone jack.
I already own a few headphones, namely the Audio-Technica ATH-Pro500MK2, ATH-T500, Sennheiser PX 100 II & PX 200 II, and the Philips Downtown and Uptown (Rule #3). I’m thinking of adding a new one and I can’t decide between the Beats Solo 2, Grado SR80e, and Sony MDR-10RC (budget constraints). I listen mostly Pop/Rock and Classical music and I have a cheap (Fiio E06) headphone amplifier.
Active noise-cancelling headphones use a microphone, amplifier, and speaker to pick up, amplify, and play ambient noise in phase-reversed form; this to some extent cancels out unwanted noise from the environment without affecting the desired sound source, which is not picked up and reversed by the microphone. They require a power source, usually a battery, to drive their circuitry. Active noise cancelling headphones can attenuate ambient noise by 20 dB or more, but the active circuitry is mainly effective on constant sounds and at lower frequencies, rather than sharp sounds and voices. Some noise cancelling headphones are designed mainly to reduce low-frequency engine and travel noise in aircraft, trains, and automobiles, and are less effective in environments with other types of noise.
At the heart of the WH-1000xM3 is outstanding wireless sound. Sony’s LDAC technology delivers a wireless signal at what the company claims is three times the quality of standard Bluetooth streaming, and the headphones also support the latest aptX HD codec (with supported devices). The 1000xM3 even “upscale” wireless music from high-resolution audio devices using a special chip, helping to make music sound dynamic and beautiful, with authoritative bass and clear treble response held together by a well-rounded midrange.

A planar magnetic driver consists of a relatively large membrane that contains an embedded wire pattern. This membrane is suspended between two sets of permanent, oppositely aligned, magnets. A current passed through the wires embedded in the membrane produces a magnetic field that reacts with the field of the permanent magnets to induce movement in the membrane, which produces sound.


The number one rule to understand when embarking on your headphone-search journey is to understand that there is no one headphone to rule them all. Like automobiles, headphones are made for different purposes. You have the supercars, roadsters, SUVs, 4x4s, sedans, to the compacts, and you chose what’s best for your day to day needs. There is no one car that can tackle snow and win races on the drag strip. The sooner you understand this fact, the more money you will save.
These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
Again, back on the automobile analogy. If you’re driving in downtown Chicago after winter time, the road is full of potholes. It would be nice to be riding in a nice SUV, rather than typical sports car with a fully stiff suspension. It doesn’t matter if your sports car happen to cost three times the cost of the SUV, it’s just the wrong car for the road. Likewise headphones. A $1,000 headphone can sound very awful on the wrong music. Don’t believe me? Try listening to Linkin Park with the $1,800 Sennheiser HD800. You will wonder where that $1,800 went.
We run every pair through a rigorous testing process over several days or weeks. That includes playing them in all sorts of scenarios — be it on a bus, in the listening room, or at the office — and playing back from a wide array of sources. We know most people use their headphones with a smartphone, often with lower-quality MP3 resolution tracks, so we do, too.
While iPhone users can expect that their phones are missing essential parts to look good, AAC is one of those codecs that maybe cut a few too many bits out of its data transmission. By using an aggressive psychoacoustic model of compression, AAC seeks to cut data where you wouldn’t normally be able to hear it anyway—but it gets a little too aggressive at times.
I’ve never enjoyed the audio quality of Bluetooth headphones, but that’s just me. The sound is better than it ever has been, and it’ll get you 90% of the way there—but not everybody is willing to make that tradeoff. Since USB-C headphones have largely ceded their market advantages over Bluetooth, we have to examine the consumer audio technology’s performance in a world where the headphone jack is disappearing.
However, we also move up to high-resolution audio files, as well as a wide variety of sources, including plugging in directly to a PC or Mac, using USB DACs (digital-to-analog converters), and employing high-quality, dedicated portable players and amplifiers. Finally, we compare the headphones to some of our go-to models, both in their class and price point, as well as a level or two above to find out if they can punch above their weight.
The Earbuds 500 won’t be available until early 2020, but they might just be worth waiting for. They look to be the natural successor to the SoundSport Free, the company’s first go at truly wireless earbuds, but probably better in every way. The Earbuds 500 will likely have a longer battery life, a smaller charging case and charge via USB-C. They will be sport-focused, too, and a more affordable option to the company’s other new-age wireless earbuds, the Noise Cancelling Earbuds 700.
I tend to regard the M50 as the minimum for hi-fi listening with no apologies for limitations. But if you have to go cheaper than the usual $125 USD for the M50, the B&O Form2 with a simple bass boost gives a real hi-fi sound, and it should be available for about $100. The Beyer DTX-501P (similar to soundmagic P30) is good for $100, but needs a slight treble boost. The LSTN Fillmore with wood cups is somewhat colored, but still a good listen and good for $100. Below $100 are the Sennheiser PX series – not hi-fi by any means. There are several good IEMs below $100, and Apple Earpods with a Dirac or Accudio Pro player are very hi-fi, and cheap.
There’s a lot of debate in the headphone world about wireless audio. Wireless standards like Bluetooth are capable of making music sound great, but because Bluetooth relies on data compression, it will never sound quite as good as a wired connection. The big question is, with the improvements in Bluetooth, can anyone tell the difference anymore between Bluetooth audio and wired audio? We’re skeptical that the difference is meaningful, so here’s our best advice: if you’re an audiophile who cares about hearing music in high fidelity, you’ll probably be better off with a set of wired headphones; if you need everything to sound great but prefer the convenience of wireless connections, go for a pair of Bluetooth headphones.
I will post some comments. If I forget let me know here. My main reason for ordering was the old pads on the 1350 wouldn’t make a good bass seal in colder weather, and Beyer has upgraded the pads on both the 1350 and the T51p, so I’m hoping for a better seal this time. I don’t know of any headphone that size that ‘s as accurate and detailed as those little Tesla models, and the carrycase is icing on the cake.
There are many good articles here on Headfonia. You could click on Buyers’ Guides and read through those, then click on the Headphones topic header for each individual report. The “process” you go through is learning your own sound preferences, then matching that to the products that are available. It is a process, so you have to learn the major differences. Any shortcuts you take might be OK, but when you buy something that you discover you don’t like, make sure you can return that item.
Headphones connect to a signal source such as an audio amplifier, radio, CD player, portable media player, mobile phone, video game console, or electronic musical instrument, either directly using a cord, or using wireless technology such as Bluetooth, DECT or FM radio. The first headphones were developed in the late 19th century for use by telephone operators, to keep their hands free. Initially the audio quality was mediocre and a step forward was the invention of high fidelity headphones.[3]
×