Will Greenwald has been covering consumer technology for a decade, and has served on the editorial staffs of CNET.com, Sound & Vision, and Maximum PC. His work and analysis has been seen in GamePro, Tested.com, Geek.com, and several other publications. He currently covers consumer electronics in the PC Labs as the in-house home entertainment expert, reviewing TVs, media hubs, speakers, headphones, and gaming accessories. Will is also an ISF Level II-certified TV calibrator, which ensures the thoroughness and accuracy of all PCMag TV reviews.
Ok, it’s been a month and a lot of new experience. I’ve auditoned ATH M-50 (clamp’s too tight; they sweat my ears just from few minutes of exposure) and Senn HD 600 (the velour pad is amazingly comfortable & size is ok). So, long story short, now I can refine my search to: circumaural&non-pleather/foam pads, which brought me to Senn HD 439 (cloth) & 518 (velour).
Transducer technologies employed much less commonly for headphones include the Heil Air Motion Transformer (AMT); Piezoelectric film; Ribbon planar magnetic; Magnetostriction and Plasma-ionisation. The first Heil AMT headphone was marketed by ESS Laboratories and was essentially an ESS AMT tweeter from one of the company's speakers being driven at full range. Since the turn of the century, only Precide of Switzerland have manufactured an AMT headphone. Piezoelectric film headphones were first developed by Pioneer, their two models used a flat sheet of film that limited the maximum volume of air movement. Currently, TakeT produces a piezoelectric film headphone shaped similarly to an AMT transducer but, which like the Precide driver, has a variation in the size of transducer folds over the diaphragm. It additionally incorporates a two way design by its inclusion of a dedicated tweeter/supertweeter panel. The folded shape of a diaphragm allows a transducer with a larger surface area to fit within smaller space constraints. This increases the total volume of air that can be moved on each excursion of the transducer given that radiating area.
I will post some comments. If I forget let me know here. My main reason for ordering was the old pads on the 1350 wouldn’t make a good bass seal in colder weather, and Beyer has upgraded the pads on both the 1350 and the T51p, so I’m hoping for a better seal this time. I don’t know of any headphone that size that ‘s as accurate and detailed as those little Tesla models, and the carrycase is icing on the cake.
The impedance of headphones is of concern because of the output limitations of amplifiers. A modern pair of headphones is driven by an amplifier, with lower impedance headphones presenting a larger load. Amplifiers are not ideal; they also have some output impedance that limits the amount of power they can provide. To ensure an even frequency response, adequate damping factor, and undistorted sound, an amplifier should have an output impedance less than 1/8 that of the headphones it is driving (and ideally, as low as possible). If output impedance is large compared to the impedance of the headphones, significantly higher distortion is present.[11] Therefore, lower impedance headphones tend to be louder and more efficient, but also demand a more capable amplifier. Higher impedance headphones are more tolerant of amplifier limitations, but produce less volume for a given output level.

If you’re buying wireless headphones, keep a spare pair of wired headphones around in case the others run out of battery. Wireless headphones are definitely the future, and the convenience is a huge benefit, but they rely on battery power to work their magic, and batteries run out. If you’re going to be in a place where you won’t be able to recharge your wireless headphones, consider keeping a backup wired pair with you so the music never has to stop.
A: What you plug your headphones into can significantly affect their sound, and the quality of the amplifiers built into portable CD/MP3 players is generally awful. It's not their fault: the little guys have to power their electronics and their internal amplifier using a few puny volts. Even some of the better home AV receivers' headphone jacks offer highly variable sound quality.

Headphones can prevent other people from hearing the sound, either for privacy or to prevent disturbing others, as in listening in a public library. They can also provide a level of sound fidelity greater than loudspeakers of similar cost. Part of their ability to do so comes from the lack of any need to perform room correction treatments with headphones. High-quality headphones can have an extremely flat low-frequency response down to 20 Hz within 3 dB. While a loudspeaker must use a relatively large (often 15" or 18") speaker driver to reproduce low frequencies, headphones can accurately reproduce bass and sub-bass frequencies with speaker drivers only 40-50 millimeters wide (or much smaller, as is the case with in-ear monitor headphones). Headphones' impressive low-frequency performance is possible because they are so much closer to the ear that they only need to move relatively small volumes of air.


If you’re buying wireless headphones, keep a spare pair of wired headphones around in case the others run out of battery. Wireless headphones are definitely the future, and the convenience is a huge benefit, but they rely on battery power to work their magic, and batteries run out. If you’re going to be in a place where you won’t be able to recharge your wireless headphones, consider keeping a backup wired pair with you so the music never has to stop.
AAC has some advantages when it comes to latency, but we recommend avoiding this if you care about audio quality. We found high levels of noise and lower than average frequency cutoffs—both unacceptable to audiophiles and younger listeners. Though the sound isn’t as bad as some may make it out to be, the shortcomings are noticeable to the human ear at normal listening volumes.
Active noise-cancelling headphones use a microphone, amplifier, and speaker to pick up, amplify, and play ambient noise in phase-reversed form; this to some extent cancels out unwanted noise from the environment without affecting the desired sound source, which is not picked up and reversed by the microphone. They require a power source, usually a battery, to drive their circuitry. Active noise cancelling headphones can attenuate ambient noise by 20 dB or more, but the active circuitry is mainly effective on constant sounds and at lower frequencies, rather than sharp sounds and voices. Some noise cancelling headphones are designed mainly to reduce low-frequency engine and travel noise in aircraft, trains, and automobiles, and are less effective in environments with other types of noise.

Their combination of dual balanced-armature drivers matched with a dynamic driver to pump up the lower end are kind of engineering normally found on products that cost more than double the price of the 1Mores. Even the smaller details are very well ironed out, such as Kevlar-wrapped cables that increase resistance to wear while simultaneously reducing tangles.
These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
×