Again, back on the automobile analogy. If you’re driving in downtown Chicago after winter time, the road is full of potholes. It would be nice to be riding in a nice SUV, rather than typical sports car with a fully stiff suspension. It doesn’t matter if your sports car happen to cost three times the cost of the SUV, it’s just the wrong car for the road. Likewise headphones. A $1,000 headphone can sound very awful on the wrong music. Don’t believe me? Try listening to Linkin Park with the $1,800 Sennheiser HD800. You will wonder where that $1,800 went.
The impedance of headphones is of concern because of the output limitations of amplifiers. A modern pair of headphones is driven by an amplifier, with lower impedance headphones presenting a larger load. Amplifiers are not ideal; they also have some output impedance that limits the amount of power they can provide. To ensure an even frequency response, adequate damping factor, and undistorted sound, an amplifier should have an output impedance less than 1/8 that of the headphones it is driving (and ideally, as low as possible). If output impedance is large compared to the impedance of the headphones, significantly higher distortion is present.[11] Therefore, lower impedance headphones tend to be louder and more efficient, but also demand a more capable amplifier. Higher impedance headphones are more tolerant of amplifier limitations, but produce less volume for a given output level.
A. Near-field communication, better known as NFC, is a wireless connectivity protocol similar to Bluetooth. NFC uses less power than Bluetooth and is faster when pairing devices, but it only has a range of about four inches. Some headphones use NFC technology to drive the process of pairing headphones with smartphones, but because of the range, it’s not used to transmit sound. While both Android phones and iPhones include NFC chips, it’s not accessible in Apple devices, so if you want a pair of headphones with NFC, you’ll need to own an Android phone to take advantage of the faster pairing.
The impedance of headphones is of concern because of the output limitations of amplifiers. A modern pair of headphones is driven by an amplifier, with lower impedance headphones presenting a larger load. Amplifiers are not ideal; they also have some output impedance that limits the amount of power they can provide. To ensure an even frequency response, adequate damping factor, and undistorted sound, an amplifier should have an output impedance less than 1/8 that of the headphones it is driving (and ideally, as low as possible). If output impedance is large compared to the impedance of the headphones, significantly higher distortion is present.[11] Therefore, lower impedance headphones tend to be louder and more efficient, but also demand a more capable amplifier. Higher impedance headphones are more tolerant of amplifier limitations, but produce less volume for a given output level.
Frequency response: Frequency-response specifications in full-size loudspeakers are generally pretty useless in predicting sound quality, but headphone frequency-response numbers are even worse. Manufacturers have routinely exaggerated frequency-response figures to the point that they're irrelevant. Even the flimsiest, cheap headphones routinely boast extremely low bass-response performance --15Hz or 20Hz -- but almost always sound lightweight and bright. Generally, bass buffs will be happier sticking with larger 'phones.
The Galaxy Buds produce exemplary audio quality packed into a pair of unobtrusive earpieces, complete with easy-to-use touch controls for playback, volume, and skipping tracks. According to Samsung, they have a 6-hour battery life and come with a powered carrying case that will recharge the earphones for up to 7 additional hours of playback on the go. The case itself can be charged with a wireless charging mat, and it’s particularly small compared with the cases that come with many true wireless models.
Garbage in = Garbage out (GIGO) is a popular phrase used to emphasize the importance of a good source. This can be the soundcard in your laptop, the quality of your portable audio player, or the CD player you’re using for music listening. Those fall into the “Source” category. The better your source is, the better the sound will be at the headphone end. This is why we are seeing more and more audiophile digital audio players (audiophile DAPs). They are expensive but they sound good.

Be sure to assess the build quality of your prospective headphones. Some earbuds and portable devices are relatively fragile, for instance. If the headphones fold up for easy storage, are the hinges robust, or will they fall apart in a month or two? Don't forget to consider that the earpads and earbuds will get extensive wear and tear over the life of the headphones.


AAC has some advantages when it comes to latency, but we recommend avoiding this if you care about audio quality. We found high levels of noise and lower than average frequency cutoffs—both unacceptable to audiophiles and younger listeners. Though the sound isn’t as bad as some may make it out to be, the shortcomings are noticeable to the human ear at normal listening volumes.
Dale: The examples listed here are good general rules, but one thing to keep in mind is in the mid-to-lower price tiers, open-back headphones aren’t nearly as common as the closed types. The smaller list of choices, and the more limited reviews of those items, could make getting a perfect fit more difficult. Sound stage and openness are often given as the advantage of the open-back types, but it’s just a general rule and some closed-back headphones excel at those properties. An important thing to consider is the music itself, since sound stage and perspective varies widely in different recordings.
Sports headphones are among the most popular types of headphones and the best ones are now wireless. Sweat-resistant or even totally waterproof, they can be used at the gym or for running or biking. Some are have an open or semi-open design to let some sound in for safety reasons (so you can hear traffic noise). However, other models have a sealed, noise-isolating design.
As the name gives away, these have an on-ear design instead of the over-ear design of most of Bose’s other offerings. The trade-off is that the On-Ear Wireless Headphones won’t be able to block out ambient noises as well, but some people might find them more comfortable. Plus they’re well cheaper than most other Bose wireless headphones. It should be noted that many reviewers, including Sound Guys, have praised the sound quality of these headphones.

64 audio A&K AAW ALO Audio Astell Astell & Kern Astell 'n Kern AstellKern astellnkern Audez'e Audioquest Audio Technica Beyerdynamic Burson canjam Cayin Chord Chord Electronics CypherLabs Earsonics Effect Audio Empire Ears Fiio Flare Audio giveaway Grado Hifiman Ibasso JH Audio Jomo Jomo Audio Meze Noble Audio Nuforce picture Sunday Picture Wednesday plusSound Review Sennheiser Sony STAX The Fav album of Ultimate Ears Watch it Wednesday Wayback Wednesday
A balanced armature is a sound transducer design primarily intended to increase the electrical efficiency of the element by eliminating the stress on the diaphragm characteristic of many other magnetic transducer systems. As shown schematically in the first diagram, it consists of a moving magnetic armature that is pivoted so it can move in the field of the permanent magnet. When precisely centered in the magnetic field there is no net force on the armature, hence the term 'balanced.' As illustrated in the second diagram, when there is electric current through the coil, it magnetizes the armature one way or the other, causing it to rotate slightly one way or the other about the pivot thus moving the diaphragm to make sound.
This is better than I thought it would be. Worst case is the T51p won’t have the excitement of the more “V”-shaped headphone sounds, but you’ll hear more of what’s actually in the recording. The more neutral headphones are most often a little bright (that’s what most users say), and can irritate on electronic and improvised music, but the T51p didn’t show any of that with these 3 tracks.
Anyway, I’m looking for comfortable headphones for casual listening from my mobile phone, and so far I’m uncomfortable with portables. I have tried many portables in multiple stores, they sweat my ears after few minutes, and their small size never cover my ears properly. Recently I have experienced one of Clarion headphone (dunno which series, its price around Rp 99.000), while its big ear cushion cover my ears properly, I felt too much pressure on the area below my ears, probably due to its weight..
Of the tested codecs we met, aptX and aptX HD fared the best out of all our candidates. While that may seem strange to say, on the whole their results were right where they needed to be in order to stand in for a wire for commuters, and listeners over 40. You’d really only run into issues at high volumes (90+dB), so while aptX isn’t quite able to keep up with CD quality, aptX HD is able to get extremely close to the mark with a little processing creativeness. Both codecs fall short in the highest frequencies a human could potentially hear, but the vast majority of people can’t hear sounds over 18kHz anyway.
Active noise-cancelling headphones use a microphone, amplifier, and speaker to pick up, amplify, and play ambient noise in phase-reversed form; this to some extent cancels out unwanted noise from the environment without affecting the desired sound source, which is not picked up and reversed by the microphone. They require a power source, usually a battery, to drive their circuitry. Active noise cancelling headphones can attenuate ambient noise by 20 dB or more, but the active circuitry is mainly effective on constant sounds and at lower frequencies, rather than sharp sounds and voices. Some noise cancelling headphones are designed mainly to reduce low-frequency engine and travel noise in aircraft, trains, and automobiles, and are less effective in environments with other types of noise.
While iPhone users can expect that their phones are missing essential parts to look good, AAC is one of those codecs that maybe cut a few too many bits out of its data transmission. By using an aggressive psychoacoustic model of compression, AAC seeks to cut data where you wouldn’t normally be able to hear it anyway—but it gets a little too aggressive at times.
These early headphones used moving iron drivers,[7] with either single-ended or balanced armatures. The common single-ended type used voice coils wound around the poles of a permanent magnet, which were positioned close to a flexible steel diaphragm. The audio current through the coils varied the magnetic field of the magnet, exerting a varying force on the diaphragm, causing it to vibrate, creating sound waves. The requirement for high sensitivity meant that no damping was used, so the frequency response of the diaphragm had large peaks due to resonance, resulting in poor sound quality. These early models lacked padding, and were often uncomfortable to wear for long periods. Their impedance varied; headphones used in telegraph and telephone work had an impedance of 75 ohms. Those used with early wireless radio had more turns of finer wire to increase sensitivity. Impedance of 1000 to 2000 ohms was common, which suited both crystal sets and triode receivers. Some very sensitive headphones, such as those manufactured by Brandes around 1919, were commonly used for early radio work.
×