Electrostatic drivers consist of a thin, electrically charged diaphragm, typically a coated PET film membrane, suspended between two perforated metal plates (electrodes). The electrical sound signal is applied to the electrodes creating an electrical field; depending on the polarity of this field, the diaphragm is drawn towards one of the plates. Air is forced through the perforations; combined with a continuously changing electrical signal driving the membrane, a sound wave is generated. Electrostatic headphones are usually more expensive than moving-coil ones, and are comparatively uncommon. In addition, a special amplifier is required to amplify the signal to deflect the membrane, which often requires electrical potentials in the range of 100 to 1000 volts.

Headphones can prevent other people from hearing the sound, either for privacy or to prevent disturbing others, as in listening in a public library. They can also provide a level of sound fidelity greater than loudspeakers of similar cost. Part of their ability to do so comes from the lack of any need to perform room correction treatments with headphones. High-quality headphones can have an extremely flat low-frequency response down to 20 Hz within 3 dB. While a loudspeaker must use a relatively large (often 15" or 18") speaker driver to reproduce low frequencies, headphones can accurately reproduce bass and sub-bass frequencies with speaker drivers only 40-50 millimeters wide (or much smaller, as is the case with in-ear monitor headphones). Headphones' impressive low-frequency performance is possible because they are so much closer to the ear that they only need to move relatively small volumes of air.
Sensitivity is a measure of how effectively an earpiece converts an incoming electrical signal into an audible sound. It thus indicates how loud the headphones are for a given electrical drive level. It can be measured in decibels of sound pressure level per milliwatt (dB (SPL)/mW) or decibels of sound pressure level per volt (dB (SPL) / V).[12] Unfortunately, both definitions are widely used, often interchangeably. As the output voltage (but not power) of a headphone amplifier is essentially constant for most common headphones, dB/mW is often more useful if converted into dB/V using Ohm's law:

Frequency response: Frequency-response specifications in full-size loudspeakers are generally pretty useless in predicting sound quality, but headphone frequency-response numbers are even worse. Manufacturers have routinely exaggerated frequency-response figures to the point that they're irrelevant. Even the flimsiest, cheap headphones routinely boast extremely low bass-response performance --15Hz or 20Hz -- but almost always sound lightweight and bright. Generally, bass buffs will be happier sticking with larger 'phones.
If you have a bass problem you could find a filter of some kind that cuts the low bass. Some bass controls can do that. I haven’t found a music genre that totally lacks strong bass, although “acoustic” sometimes doesn’t have strong bass. Mainly, you should make sure your system is matched properly with amp and headphone, so the different frequencies are in balance. Then you will have better luck with different music.
Fathers Day is just around the corner and we want to help you find the right gift for the amazing fathers in your life. At RadioShack of Lenoir, we have some awesome deals going on RIGHT NOW! Buy the Nebo Big Daddy Flashlight (2000 lumens) and get the Nebo Blast half off, Nebo Knives are buy one get one half off, and Nebo flipits are buy one get one 40% off. We also have some awesome Bluetooth portable speakers that can be taken to the lake, bonfire, or the beach. Also, come by and enter your father to win a Nebo glow light along with a Nebo cup! We hope to see you soon!
Although some headphones available are wired, many more are available that are wireless, and use Bluetooth to enable your music to be heard, even if the stereo or other device is several feet or even a few rooms away. Wired headphones deliver superior sound quality to wireless and Bluetooth because there's no chance of picking up interference from other devices, which sometimes happens with wireless headphones. In addition, wired headphones have no batteries to power them, so there's no chance of interruption should the batteries wear out.
×