The FiiO E17 “Alpin” + AIAIAI TMA-1 or Pro700 Mk2 seem like a mix you’d recommend, but I’m concerned those cans will be uncomfortable for day-long use.  Also I don’t know if that DAC/amp is the best for my style of music/headphones.  Third, some of my techno tracks have stunning vocals, and I don’t want to miss out on those high notes while enjoying the bass.
If you’ll mostly be using headphones at your desk, install a headphone hook so you can safely stow yours when you’re not using them. Headphones can be fairly fragile, so it’s important to take care of yours and avoid tossing them around. A headphone hook gives your favorite pair a place to hang and creates a fun conversation piece for your workstation.
I see, yes, but that should serve as an important lesson – the soundstage is not real in the same sense as actual tones, bass, treble, whatever. Soundstage is a perception that’s based on many factors, and here’s a challenge for you: You should be able to find some music tracks that have better soundstage on one headphone, and other tracks that will be better on the other headphone. Most of the time it will be just one way, but when a closed headphone beats an open headphone, I expect the open headphone will still show an advantage on some tracks. Your hearing perception could be tricked by simple things like a recess or emphasis in certain frequency ranges, or even phase shift when more than one driver is in the cup.
The thermoacoustic effect generates sound from the audio frequency Joule heating of the conductor, an effect that is not magnetic and does not vibrate the speaker. In 2013 a carbon nanotube thin-yarn earphone based on the thermoacoustic mechanism was demonstrated by a research group in Tsinghua University.[22] The as-produced CNT thin yarn earphone has a working element called CNT thin yarn thermoacoustic chip. Such a chip is composed of a layer of CNT thin yarn array supported by the silicon wafer, and periodic grooves with certain depth are made on the wafer by micro-fabrication methods to suppress the heat leakage from the CNT yarn to the substrate.[citation needed]

Just a few hours of burn-in today – I don’t expect much change with Tesla-quality drivers etc. The treble is recessed almost as much as the Philips M1 I had, kind-of a worst-case scenario. So I took out my most minimal non-peaky non-bright non-sibilant headphone – the B&O H6, and even though it doesn’t sound the same as the T51p because of the H6’s “light” midrange, I wanted to get a sense of how much the T51p was recessed below a very minimal treble. My Foobar2000 settings were +2 at 2.5, +4 at 3.5, +2 at 5, +4 at 7, +6 at 10, 14, and 20 khz. Normally I wouldn’t do the dip at 5 khz, but the T51p has a nasty 10 db peak around 5 khz, which makes it difficult for portable use without a customizable equalizer. Without a treble boost it sounds very boomy as well as muffled. I can understand Beyer going to a darker sound with more bass – in fact I thought it was a move in the right direction. But they need to cut that (resonant?) peak around 5 khz. I compared to several other headphones and none of those were anything like that.


Pairing high sensitivity headphones with power amplifiers can produce dangerously high volumes and damage headphones. The maximum sound pressure level is a matter of preference, with some sources recommending no higher than 110 to 120 dB. In contrast, the American Occupational Safety and Health Administration recommends an average SPL of no more than 85 dB(A) to avoid long-term hearing loss, while the European Union standard EN 50332-1:2013 recommends that volumes above 85 dB(A) include a warning, with an absolute maximum volume (defined using 40–4000 Hz noise) of no more than 100 dB to avoid accidental hearing damage.[14] Using this standard, headphones with sensitivities of 90, 100 and 110 dB (SPL)/V should be driven by an amplifier capable of no more than 3.162, 1.0 and 0.3162 RMS volts at maximum volume setting, respectively to reduce the risk of hearing damage.
hi? i want to ask a question. Im a complete newbie on the audiphilic side so i red on a site that the more the impedance is higher a headphone amp is requierd and less the impedance a headphone amp is not that much requierd cause the headphones with less impedance are made for portable players. Now let me get to the point im using cheap headphones the philips sbc hp250 they are old about 5 years and sound ok but i want to replace them so i use them mostly for listening to hours of music and i am also a musician so would it make a diference if i would buy a behringer headphone amp http://www.amazon.com/Behringer-HA400-4-Channel-Stereo-Headphone/dp/B000KIPT30/ref=sr_1_6?ie=UTF8&qid=1379715994&sr=8-6&keywords=behringer+amplifier and amplify those headphones would they play better cause now im having them plugged on a intergrated via vinyl soundcard http://www.via.com.tw/en/products/audio/codecs/vt1708s/. and they sound shitty on full volume. I am considering to buy new full size headphones and im willing to give max 80 euros for them so for the start i just want them to be loud but i want a clear sound at high volume levels. To be more specific i want a clear sound that is balanced in the lows mids and highs but not distorted and the lows should not be too much overpowered. I was sniffing around your site and found some sennheiser hd 202 ii they are not even close to 80 euros but i heard they sound great would they be better than these philips headphones and what other alternatives would you suggest me for max 80 euros

The thermoacoustic effect generates sound from the audio frequency Joule heating of the conductor, an effect that is not magnetic and does not vibrate the speaker. In 2013 a carbon nanotube thin-yarn earphone based on the thermoacoustic mechanism was demonstrated by a research group in Tsinghua University.[22] The as-produced CNT thin yarn earphone has a working element called CNT thin yarn thermoacoustic chip. Such a chip is composed of a layer of CNT thin yarn array supported by the silicon wafer, and periodic grooves with certain depth are made on the wafer by micro-fabrication methods to suppress the heat leakage from the CNT yarn to the substrate.[citation needed]
PCMag, PCMag.com and PC Magazine are among the federally registered trademarks of Ziff Davis, LLC and may not be used by third parties without explicit permission. The display of third-party trademarks and trade names on this site does not necessarily indicate any affiliation or the endorsement of PCMag. If you click an affiliate link and buy a product or service, we may be paid a fee by that merchant.
Headphones connect to a signal source such as an audio amplifier, radio, CD player, portable media player, mobile phone, video game console, or electronic musical instrument, either directly using a cord, or using wireless technology such as Bluetooth, DECT or FM radio. The first headphones were developed in the late 19th century for use by telephone operators, to keep their hands free. Initially the audio quality was mediocre and a step forward was the invention of high fidelity headphones.[3]
×